Click-through rate (CTR) and post-click conversion rate (CVR) predictions are two fundamental modules in industrial ranking systems such as recommender systems, advertising, and search engines. Since CVR involves much fewer samples than CTR (known as the CVR data sparsity problem), most of the existing works try to leverage CTR&CVR multi-task learning to improve CVR performance. However, typical coarse-grained sub-network/layer sharing methods may introduce conflicts and lead to performance degradation, since not every neuron or neuron connection in one layer should be shared between CVR and CTR tasks. This is because users may have different fine-grained content feature preferences between deep consumption and click behavior, represented by CVR and CTR, respectively. To address this sharing&conflict problem, we propose a novel multi-task CVR modeling scheme with neuron-connection level sharing named NCS4CVR, which can automatically and flexibly learn which neuron weights are shared or not shared without artificial experience. Compared with previous layer-level sharing methods, this is the first time that a fine-grained CTR&CVR sharing method at the neuron connection level is proposed, which is a research paradigm shift in the sharing level. Both offline and online experiments demonstrate that our method outperforms both the single-task model and the layer-level sharing model. Our proposed method has now been successfully deployed in an industry video recommender system serving major traffic.


翻译:点击率(CTR)和点击后转换率(CVR)预测是工业排名系统中的两个基本模块,如建议系统、广告和搜索引擎。由于CVR涉及的样本比CTR(CVR数据蒸发问题)少得多,大多数现有工作都试图利用CTR&CVR多任务学习来提高CVR的性能。然而,典型的粗糙分级子网络/共享方法可能会引发冲突并导致性能退化,因为一个层次的神经或神经连接不应在CVR和CTR任务之间共享。这是因为CVR涉及的样本可能比CTR(CVR数据和CTR分别代表的深度消费和点击行为之间的偏好要少得多得多得多,因此,为了解决这一共享和冲突性问题,我们提议了一个新的多任务CVR模型模型模式模式模式模式模式计划,可以自动和灵活地了解哪些神经重量是共享的,或者不是在没有人工经验的情况下共享的。比较了先前的层次-R级共享方式,这是在C-级别上共享一个拟议的单一模式化的连接方法。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
31+阅读 · 2021年3月29日
VIP会员
相关资讯
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员