We propose a splitting Hamiltonian Monte Carlo (SHMC) algorithm, which can be computationally efficient when combined with the random mini-batch strategy. By splitting the potential energy into numerically nonstiff and stiff parts, one makes a proposal using the nonstiff part of $U$, followed by a Metropolis rejection step using the stiff part that is often easy to compute. The splitting allows efficient sampling from systems with singular potentials (or distributions with degenerate points) and/or with multiple potential barriers. In our SHMC algorithm, the proposal only based on the nonstiff part in the splitting is generated by the Hamiltonian dynamics, which can be potentially more efficient than the overdamped Langevin dynamics. We also use random batch strategies to reduce the computational cost to $\mathcal{O}(1)$ per time step in generating the proposals for problems arising from many-body systems and Bayesian inference, and prove that the errors of the Hamiltonian induced by the random batch approximation is $\mathcal{O}(\sqrt{\Delta t})$ in the strong and $\mathcal{O}(\Delta t)$ in the weak sense, where $\Delta t$ is the time step. Numerical experiments are conducted to verify the theoretical results and the computational efficiency of the proposed algorithms in practice.


翻译:我们提出分解汉密尔顿蒙特卡洛(SHMC)算法,这种算法在与随机的迷你策略结合时可以实现计算效率。通过将潜在能量分解成数字上不固定和硬的部分,我们提出使用美元的非硬部分的建议,然后是大都会拒绝步骤,使用通常容易计算的硬部分。分解允许从具有独特潜力(或分布点变差的分布)和/或多种潜在障碍的系统中进行高效取样。在我们的SHMC算法中,仅根据分解中非非硬部分的建议是由汉密尔顿的动态产生的,这种动态可能比过份的朗埃文动态更有效。我们还采用随机批量战略,将计算成本降低到美元(Omathcal{O}(1) 一步,就许多机体系统和巴耶斯的推断产生的问题提出建议,并证明随机批量近近标导致汉密尔顿的错误是美元(smathcal{(sqrt ket) 一步(x) levelendal) 和美元(Omath\ mal_D) lexalendalendal lex) legalendal doal doal lex lex lex lex lex lex lex lex lex lex lex lex lex lexxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx

0
下载
关闭预览

相关内容

专知会员服务
50+阅读 · 2020年12月14日
因果图,Causal Graphs,52页ppt
专知会员服务
246+阅读 · 2020年4月19日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年8月10日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2017年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员