Deep convolutional neural networks (CNNs) have shown a strong ability in mining discriminative object pose and parts information for image recognition. For fine-grained recognition, context-aware rich feature representation of object/scene plays a key role since it exhibits a significant variance in the same subcategory and subtle variance among different subcategories. Finding the subtle variance that fully characterizes the object/scene is not straightforward. To address this, we propose a novel context-aware attentional pooling (CAP) that effectively captures subtle changes via sub-pixel gradients, and learns to attend informative integral regions and their importance in discriminating different subcategories without requiring the bounding-box and/or distinguishable part annotations. We also introduce a novel feature encoding by considering the intrinsic consistency between the informativeness of the integral regions and their spatial structures to capture the semantic correlation among them. Our approach is simple yet extremely effective and can be easily applied on top of a standard classification backbone network. We evaluate our approach using six state-of-the-art (SotA) backbone networks and eight benchmark datasets. Our method significantly outperforms the SotA approaches on six datasets and is very competitive with the remaining two.


翻译:深相神经网络(CNNs)显示在采矿中具有很强的能力,具有歧视性的物体的构成和部件信息,以便图像识别。对于细微的识别而言,环境觉察到的物体/cene的丰富特征代表具有关键作用,因为它在同一个子类中存在显著差异,不同亚类之间也存在微妙差异。发现物体/cene之间充分特征的细微差异并不是直截了当的。为了解决这个问题,我们提议建立一个新的环境觉察力集合(CAP),通过子像素梯度有效捕捉微妙的变化,并学习如何在不要求捆绑框和/或可辨别部分说明的情况下,参加信息丰富的整体区域及其在区分不同子类中的重要性。我们还引入了一个新特点,即考虑集成区域的信息性与其空间结构之间的内在一致性,以捕捉到它们之间的语系关联。我们的方法简单但非常有效,并且可以很容易在标准分类主干网顶上应用。我们用六个状态(SotA)的主干网和八个基准数据集来评估我们的方法。我们的方法与其余的6个有竞争力的6个数据外。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Arxiv
7+阅读 · 2018年4月24日
VIP会员
相关VIP内容
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
50+阅读 · 2020年2月26日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
CVPR2019| 05-20更新17篇点云相关论文及代码合集
极市平台
23+阅读 · 2019年5月20日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
Top
微信扫码咨询专知VIP会员