Principal component analysis (PCA) has achieved great success in unsupervised learning by identifying covariance correlations among features. If the data collection fails to capture the covariance information, PCA will not be able to discover meaningful modes. In particular, PCA will fail the spatial Gaussian Process (GP) model in the undersampling regime, i.e. the averaged distance of neighboring anchor points (spatial features) is greater than the correlation length of GP. Counterintuitively, by drawing the connection between PCA and Schr\"odinger equation, we can not only attack the undersampling challenge but also compute in an efficient and decoupled way with the proposed algorithm called Schr\"odinger PCA. Our algorithm only requires variances of features and estimated correlation length as input, constructs the corresponding Schr\"odinger equation, and solves it to obtain the energy eigenstates, which coincide with principal components. We will also establish the connection of our algorithm to the model reduction techniques in the partial differential equation (PDE) community, where the steady-state Schr\"odinger operator is identified as a second-order approximation to the covariance function. Numerical experiments are implemented to testify the validity and efficiency of the proposed algorithm, showing its potential for unsupervised learning tasks on general graphs and manifolds.
翻译:主要组成部分分析(PCA) 通过查明不同功能之间的共变关系,在不受监督的学习中取得了巨大成功。如果数据收集未能捕捉到共变信息,常设仲裁院将无法发现有意义的模式。特别是,常设仲裁院将失败低抽样制度中的空间高斯进程模型(GP),即相邻锚点的平均距离(空间特征)大于GP的相干长度。直觉地说,通过绘制常设仲裁院与Schr\\'odder等式之间的联系,我们不仅能够应对低比抽样挑战,而且能够以高效和分解的方式与拟议的叫做Schr\'odinger 常设仲裁院的算法进行计算。我们的算法仅要求特征差异和估计相关长度作为投入,构建相应的Schr\'odginger等式(空间特征)的平均距离大于GPGP的相干长。我们还将在部分差异方程(PDE)社区中确定我们的算法与模型削减技术的关联,在其中,稳定的Schr\\'lvarial Scial Science Science laveal practal ex sactal recal recal recal recal sactal sactal sactal practal legillation the laview practal practal practal pressal pressal pressal laviewal press press laisal laisal laisal lading lading lating the press latingal press 和总算算算算算算算算算作为“ 和S 和不稳定和不稳定性性性性功能, preval-s pal disglicival disglicival pract sal 等等等的算法, 功能, 和总算算算算算算作性功能, 等同, 等同,我们的算算法,我们的算算性总的算盘化的算算算算算算算算算性能与总的算性和不稳定和总的算性能性能性能性能性能性能性能性能功能的算作。