Duality results connecting persistence modules for absolute and relative homology provides a fundamental understanding into persistence theory. In this paper, we study similar associations in the context of zigzag persistence. Our main finding is a weak duality for the so-called non-repetitive zigzag filtrations in which a simplex is never added again after being deleted. The technique used to prove the duality for non-zigzag persistence does not extend straightforwardly to our case. Accordingly, taking a different route, we prove the weak duality by converting a non-repetitive filtration to an up-down filtration by a sequence of diamond switches. We then show an application of the weak duality result which gives a near-linear algorithm for computing the $p$-th and a subset of the $(p-1)$-th persistence for a non-repetitive zigzag filtration of a simplicial $p$-manifold. Utilizing the fact that a non-repetitive filtration admits an up-down filtration as its canonical form, we further reduce the problem of computing zigzag persistence for non-repetitive filtrations to the problem of computing standard persistence for which several efficient implementations exist. Our experiment shows that this achieves substantial performance gain. Our study also identifies repetitive filtrations as instances that fundamentally distinguish zigzag persistence from the standard persistence.
翻译:将绝对和相对同质的持久性模块连接在一起的质量结果提供了对持久性理论的基本理解。 在本文中, 我们研究了类似协会在 zigzag 持久性背景下的类似关联。 我们的主要发现是所谓的“ 无重复 zigzag 过滤器” 的二元性弱。 在这种过滤器中, 简单x在被删除后永远不会再加一次。 用来证明非重复 zigzag 持久性的双重性的方法并不直接延伸到我们的案件。 因此, 采取不同的路线, 我们通过将非重复过滤器转换成由钻石开关序列向上向下过滤程序, 来证明存在薄弱的双重性。 然后我们展示了一种微弱的双重性结果的应用, 使计算美元值( p-1) 和 美元( $- sigzag ) 的组合在被删除后不再再增加。 用来证明非重复 zigzag 持久性的双重性过滤技术并没有直接延伸到我们的案件。 因此, 通过非重复性过滤的重复性过滤, 我们的重复性过滤 的重复性筛选, 我们的重复性研究也证明了 持续性 持续性 持续性 标准的计算 。