We focus on finite element method computations for time-dependent problems. We prove that the computational cost of the space-time formulation is higher than the cost of the time-marching schemes. This applies to both direct and iterative solvers. It concerns both uniform and adaptive grids. The only exception from this rule is the h adaptive space-time simulation of the traveling point object, resulting in refinements towards their trajectory in the space-time domain. However, if this object has wings and the mesh refinements capture the shape of the wing (if the mesh refinements capture any two-dimensional manifold) the space-time formulation is more expensive than time-marching schemes. We also show that the cost of static condensation for the higher-order finite element method with hierarchical basis functions is always higher for space-time formulations. Numerical experiments with Octave confirm our theoretical findings.
翻译:我们侧重于根据时间问题计算有限元素方法。 我们证明, 空间时间配制的计算成本高于时间总计划的成本。 这适用于直接和迭代求解器。 它涉及统一和适应性电网。 这一规则的唯一例外是对流动点物体进行 h 个适应性空间时间模拟,使其在空间时域的轨迹得到改进。 但是, 如果该物体有翅膀, 网状精细则捕捉机翼的形状( 如果网状精细能捕捉任何二维元体), 空间时间配制比时间总计划更昂贵。 我们还表明,具有等级功能的较高级定点元素法的静态凝结成本对于空间时配制来说总是更高。 与Octave的数值实验证实了我们的理论结论。