Instance ranking problems intend to recover the true ordering of the instances in a data set with a variety of applications in for example scientific, social and financial contexts. Robust statistics studies the behaviour of estimators in the presence of perturbations of the data resp. the underlying distribution and provides different concepts to characterize local and global robustness. In this work, we concentrate on the global robustness of parametric ranking problems in terms of the breakdown point which measures the fraction of samples that need to be perturbed in order to let the estimator take unreasonable values. However, existing breakdown point notions do not cover ranking problems so far. We propose to define a breakdown of the estimator as a sign-reversal of all components which causes the predicted ranking to be potentially completely inverted, therefore we call our concept the order-inversal breakdown point (OIBDP). We will study the OIBDP, based on a linear model, for several different ranking problems that we carefully distinguish and provide least favorable outlier configurations, characterizations of the order-inversal breakdown point as well as sharp asymptotic upper bounds. We also outline the case of SVM-type ranking estimators.
翻译:样例排名问题旨在恢复数据集中各种应用实例的真正顺序,例如科学、社会和金融环境。强有力的统计数据研究估算者在数据扭曲的情况下的行为,研究基本分布,并提供不同的概念来说明当地和全球的稳健性。在这项工作中,我们集中研究分级问题的全球稳健性,分级点测量样本的分数,以便让估计者采用不合理的价值。但是,现有的分级点概念目前并不包括排名问题。我们提议将估算器的分解定义为所有组成部分的信号反转器,导致预测的分级有可能完全被颠倒,因此我们称我们的概念为顺序反向分级点(OIBDP )。我们将根据线性模型研究OIBDP, 研究若干不同的分级问题,我们仔细区分和提供最不利的分级配置, 分级点的分级点特征以及尖锐的次位尺。