In this article we consider the problem of testing, for two finite sets of points in the Euclidean space, if their convex hulls are disjoint and computing an optimal supporting hyperplane if so. This is a fundamental problem of classification in machine learning known as the hard-margin SVM. The problem can be formulated as a quadratic programming problem. The SMO algorithm is the current state of art algorithm for solving it, but it does not answer the question of separability. An alternative to solving both problems is the Triangle Algorithm, a geometrically inspired algorithm, initially described for the convex hull membership problem, a fundamental problem in linear programming. First, we describe the experimental performance of the Triangle Algorithm for testing the intersection of two convex hulls. Next, we compare the performance of Triangle Algorithm with SMO for finding the optimal supporting hyperplane. Based on experimental results ranging up to 5000 points in each set in dimensions up to 10000, the Triangle Algorithm outperforms SMO.


翻译:在本篇文章中,我们考虑了测试问题,即如果欧洲克利德纳空间的两组有限的点数,如果它们的锥体壳脱节,则计算出一种最佳的辅助性超飞机。这是机器学习的分类的根本问题,称为硬边SVM。 这个问题可以作为一个二次编程问题来表述。 SMO 算法是解决这一问题的现代算法状态,但是它并没有回答分离问题。 解决这两个问题的另一种办法是, 三角阿尔戈里特姆, 一种以几何学为根据的算法, 最初被描述为锥体船体成员问题, 是线性编程中的一个基本问题。 首先, 我们描述了三角阿尔戈里特姆测试两个锥体交叉点的实验性表现。 其次, 我们把三角阿尔戈里特姆的性能与SMO的性能作比较, 以找到最佳的辅助性高平板。 基于实验结果, 实验结果在每一维度上可达5000个点,, 三角阿尔戈里姆超越SMO。

0
下载
关闭预览

相关内容

知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
101+阅读 · 2020年3月9日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
109+阅读 · 2020年6月10日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Python数据分析:过去、现在和未来,52页ppt
专知会员服务
101+阅读 · 2020年3月9日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
【新书】Python编程基础,669页pdf
专知会员服务
195+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
相关资讯
图机器学习 2.2-2.4 Properties of Networks, Random Graph
图与推荐
10+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员