We extend our recently proposed Deep Learning-aided many-body dispersion (DNN-MBD) model to quadrupole polarizability (Q) terms using a generalized Random Phase Approximation (RPA) formalism, thus enabling the inclusion of van der Waals contributions beyond dipole. The resulting DNN-MBDQ model only relies on ab initio-derived quantities as the introduced quadrupole polarizabilities are recursively retrieved from dipole ones, in turn modelled via the Tkatchenko-Scheffler method. A transferable and efficient deep-neuronal network (DNN) provides atom in molecule volumes, while a single range-separation parameter is used to couple the model to Density Functional Theory (DFT). Since it can be computed at a negligible cost, the DNN-MBDQ approach can be coupled with DFT functionals such as PBE,PBE0 and B86bPBE (dispersionless). The DNN-MBQ-corrected functionals reach chemical accuracy while exhibiting lower errors compared to their dipole-only counterparts.
翻译:我们将最近提出的深学习辅助多体分散模式(DNN-MBD)扩展为四极分化(Q),使用一般随机相近(RPA)的形式主义,从而能够将范德华捐款纳入dipole之外。 由此产生的DNN-MBDQ模式只能依靠初始数量,因为引入的四极分性是从dipole中反复检索的,转而以Tkatchenko-Scheffler方法为模型。一个可转移和有效的深中中子网络(DNNN)提供了分子量的原子,而一个单一范围分隔参数被用于将模型与密度功能理论(DFT)相提并论。由于DNNN-MDQ方法可以以微不足道的成本计算,可以与DFT功能如PBE、PBE0和B86bBE(无差异)相配套。 DNNN-MBQ经修正的功能在显示化学精度时达到了化学精度。