The emergency of Pre-trained Language Models (PLMs) has achieved tremendous success in the field of Natural Language Processing (NLP) by learning universal representations on large corpora in a self-supervised manner. The pre-trained models and the learned representations can be beneficial to a series of downstream NLP tasks. This training paradigm has recently been adapted to the recommendation domain and is considered a promising approach by both academia and industry. In this paper, we systematically investigate how to extract and transfer knowledge from pre-trained models learned by different PLM-related training paradigms to improve recommendation performance from various perspectives, such as generality, sparsity, efficiency and effectiveness. Specifically, we propose an orthogonal taxonomy to divide existing PLM-based recommender systems w.r.t. their training strategies and objectives. Then, we analyze and summarize the connection between PLM-based training paradigms and different input data types for recommender systems. Finally, we elaborate on open issues and future research directions in this vibrant field.


翻译:预先培训语言模式(PLM)的紧急情况在自然语言处理领域取得了巨大成功,通过自我监督的方式学习了对大型公司的普遍代表性,预先培训的模式和学到的表述可以有益于一系列下游国家语言模式的任务。这种培训模式最近已经适应建议领域,并被认为是学术界和工业界的一种有希望的方法。在本文件中,我们系统地调查如何从各种与个人语言处理有关的培训模式所学的预先培训模式中提取和转让知识,以便从一般性、分散性、效率和有效性等不同角度改进建议绩效。具体地说,我们建议一种正方位分类学,以区分现有的基于PLM的推荐系统的培训战略和目标。然后,我们分析和总结基于PLM培训模式与建议系统的不同输入数据类型之间的联系。最后,我们阐述了这一充满活力的领域的公开问题和未来研究方向。

0
下载
关闭预览

相关内容

百篇论文纵览大型语言模型最新研究进展
专知会员服务
69+阅读 · 2023年3月31日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
LibRec 精选:推荐系统的论文与源码
LibRec智能推荐
14+阅读 · 2018年11月29日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年3月29日
Arxiv
92+阅读 · 2020年2月28日
VIP会员
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员