The textile and apparel industries have grown tremendously over the last few years. Customers no longer have to visit many stores, stand in long queues, or try on garments in dressing rooms as millions of products are now available in online catalogs. However, given the plethora of options available, an effective recommendation system is necessary to properly sort, order, and communicate relevant product material or information to users. Effective fashion RS can have a noticeable impact on billions of customers' shopping experiences and increase sales and revenues on the provider side. The goal of this survey is to provide a review of recommender systems that operate in the specific vertical domain of garment and fashion products. We have identified the most pressing challenges in fashion RS research and created a taxonomy that categorizes the literature according to the objective they are trying to accomplish (e.g., item or outfit recommendation, size recommendation, explainability, among others) and type of side-information (users, items, context). We have also identified the most important evaluation goals and perspectives (outfit generation, outfit recommendation, pairing recommendation, and fill-in-the-blank outfit compatibility prediction) and the most commonly used datasets and evaluation metrics.


翻译:纺织和服装行业在过去几年中发展迅速。现在,消费者不再需要逛很多商店、排长队或在试衣间试穿服装,因为数百万个产品都可以在网上目录中找到。然而,鉴于有大量的选项可用,必须建立有效的推荐系统,以便向用户正确排序、排序和传达相关的产品材料或信息。有效的时尚推荐系统可以显著影响数十亿消费者的购物体验,并增加供应商的销售和收入。本文的目标是提供对在服装和时尚产品特定垂直领域运营的推荐系统的综述。我们确定了时尚推荐系统研究中最紧迫的挑战,并创建了一个分类法,按照它们试图达到的目标(例如,物品或套装推荐,尺寸推荐,可解释性等)和辅助信息类型(用户、物品、上下文)对文献进行分类。我们还确定了最重要的评估目标和角度(套装生成、套装推荐、配对推荐和填空套装兼容性预测),以及最常用的数据集和评估指标。

0
下载
关闭预览

相关内容

推荐系统,是指根据用户的习惯、偏好或兴趣,从不断到来的大规模信息中识别满足用户兴趣的信息的过程。推荐推荐任务中的信息往往称为物品(Item)。根据具体应用背景的不同,这些物品可以是新闻、电影、音乐、广告、商品等各种对象。推荐系统利用电子商务网站向客户提供商品信息和建议,帮助用户决定应该购买什么产品,模拟销售人员帮助客户完成购买过程。个性化推荐是根据用户的兴趣特点和购买行为,向用户推荐用户感兴趣的信息和商品。随着电子商务规模的不断扩大,商品个数和种类快速增长,顾客需要花费大量的时间才能找到自己想买的商品。这种浏览大量无关的信息和产品过程无疑会使淹没在信息过载问题中的消费者不断流失。为了解决这些问题,个性化推荐系统应运而生。个性化推荐系统是建立在海量数据挖掘基础上的一种高级商务智能平台,以帮助电子商务网站为其顾客购物提供完全个性化的决策支持和信息服务。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
【RecSys22教程】多阶段推荐系统的神经重排序,90页ppt
专知会员服务
25+阅读 · 2022年9月30日
专知会员服务
123+阅读 · 2020年9月8日
【KDD2020-Tutorial】自动推荐系统,Automated Recommendation System
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN最新研究进展综述
机器学习研究会
25+阅读 · 2018年1月6日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
92+阅读 · 2020年2月28日
A Modern Introduction to Online Learning
Arxiv
20+阅读 · 2019年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
LibRec 精选:推荐系统的常用数据集
LibRec智能推荐
17+阅读 · 2019年2月15日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】RNN最新研究进展综述
机器学习研究会
25+阅读 · 2018年1月6日
【推荐】深度学习目标检测全面综述
机器学习研究会
21+阅读 · 2017年9月13日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
6+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
2+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员