Previous portrait image generation methods roughly fall into two categories: 2D GANs and 3D-aware GANs. 2D GANs can generate high fidelity portraits but with low view consistency. 3D-aware GAN methods can maintain view consistency but their generated images are not locally editable. To overcome these limitations, we propose FENeRF, a 3D-aware generator that can produce view-consistent and locally-editable portrait images. Our method uses two decoupled latent codes to generate corresponding facial semantics and texture in a spatial aligned 3D volume with shared geometry. Benefiting from such underlying 3D representation, FENeRF can jointly render the boundary-aligned image and semantic mask and use the semantic mask to edit the 3D volume via GAN inversion. We further show such 3D representation can be learned from widely available monocular image and semantic mask pairs. Moreover, we reveal that joint learning semantics and texture helps to generate finer geometry. Our experiments demonstrate that FENeRF outperforms state-of-the-art methods in various face editing tasks.


翻译:先前的肖像生成方法大致可分为两类: 2D GANs 和 3D-aware GANs 。 2D GANs 能够生成高度忠诚的肖像,但视觉一致性较低。 3D-aware GAN 方法可以保持视图一致性, 但生成的图像无法在本地编辑。 为了克服这些限制, 我们提议 FENeRF, 3D-aware 生成器, 3D 生成可生成视觉一致和可本地编辑的肖像图像。 我们的方法使用两种分解的潜在代码, 在空间对齐的 3D 卷中生成相应的面部语义和纹理。 从这种基底部的 3D 表示法中获益, FENeRF 能够联合制作边界对齐图像和语义遮罩, 并使用语义遮罩通过 GAN 转换来编辑 3D 音量。 我们进一步显示, 3D 代表器可以从广泛可用的单形图像和语义遮罩中学习。 此外, 我们显示, 联合学习语义和纹有助于生成细度的几何测量。 我们的实验显示, 我们的实验显示 FENR 超越了各种面编辑任务中的状态。

1
下载
关闭预览

相关内容

专知会员服务
40+阅读 · 2021年7月4日
专知会员服务
73+阅读 · 2021年5月28日
专知会员服务
63+阅读 · 2021年3月12日
【CVPR2021】自监督几何感知
专知会员服务
46+阅读 · 2021年3月6日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
6+阅读 · 2021年4月13日
Arxiv
3+阅读 · 2020年7月16日
VIP会员
相关资讯
CVPR 2019 | 34篇 CVPR 2019 论文实现代码
AI科技评论
21+阅读 · 2019年6月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
16+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员