Many software systems can be tuned for multiple objectives (e.g., faster runtime, less required memory, less network traffic or energy consumption, etc.). Optimizers built for different objectives suffer from "model disagreement"; i.e., they have different (or even opposite) insights and tactics on how to optimize a system. Model disagreement is rampant (at least for configuration problems). Yet prior to this paper, it has barely been explored. This paper shows that model disagreement can be mitigated via VEER, a one-dimensional approximation to the N-objective space. Since it is exploring a simpler goal space, VEER runs very fast (for eleven configuration problems). Even for our largest problem (with tens of thousands of possible configurations), VEER finds as good or better optimizations with zero model disagreements, three orders of magnitude faster (since its one-dimensional output no longer needs the sorting procedure). Based on the above, we recommend VEER as a very fast method to solve complex configuration problems, while at the same time avoiding model disagreement.


翻译:许多软件系统可以适应多重目标(例如,运行时间加快、记忆需求减少、网络交通或能源消耗减少等)。为不同目标而建造的优化器因“模式分歧”而受到影响;即它们对于如何优化系统有不同(甚至相反)的洞察力和策略。模型分歧非常普遍(至少对配置问题而言是如此)。在本文之前,它几乎没有被探讨过。本文表明,模型分歧可以通过VeER(向N目标空间的单维近似)来缓解。由于它正在探索一个更简单的目标空间,VeER运行速度非常快(11个配置问题)。即使我们最大的问题(可能有数万个配置),VeER发现零模式分歧是良好或更好的优化,三个规模更快(因为其单维输出不再需要排序程序)。基于以上,我们建议VeER作为解决复杂配置问题的非常快速的方法,同时避免模式分歧。

0
下载
关闭预览

相关内容

专知会员服务
25+阅读 · 2021年4月2日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2020年6月29日
Meta-Learning with Implicit Gradients
Arxiv
13+阅读 · 2019年9月10日
Few-shot Adaptive Faster R-CNN
Arxiv
3+阅读 · 2019年3月22日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
LibRec 每周算法:Wide & Deep (by Google)
LibRec智能推荐
9+阅读 · 2017年10月25日
【推荐】SVM实例教程
机器学习研究会
17+阅读 · 2017年8月26日
最佳实践:深度学习用于自然语言处理(三)
待字闺中
3+阅读 · 2017年8月20日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员