Most set prediction models in deep learning use set-equivariant operations, but they actually operate on multisets. We show that set-equivariant functions cannot represent certain functions on multisets, so we introduce the more appropriate notion of multiset-equivariance. We identify that the existing Deep Set Prediction Network (DSPN) can be multiset-equivariant without being hindered by set-equivariance and improve it with approximate implicit differentiation, allowing for better optimization while being faster and saving memory. In a range of toy experiments, we show that the perspective of multiset-equivariance is beneficial and that our changes to DSPN achieve better results in most cases. On CLEVR object property prediction, we substantially improve over the state-of-the-art Slot Attention from 8% to 77% in one of the strictest evaluation metrics because of the benefits made possible by implicit differentiation.
翻译:在深层学习使用设置等离子操作中,大多数设定的预测模型都是设置的,但它们实际上是在多位运行。我们显示,设置的等离函数不能代表多位设置的某些功能,因此我们引入了更合适的多位等离子概念。我们确定,现有的深位预测网络(DSPN)可以在不受到设置等离子障碍的阻碍的情况下成为多个设置-等离子网络(DSPN),并且用大致隐含的差别来改进它。在一系列玩具实验中,我们展示了多位定-等离子观点是有好处的,我们对于DSPN的修改在多数情况下都取得了更好的结果。关于CLEVR天体属性预测,我们大幅改进了最严格的评估指标之一中最先进的斯洛特关注度从8%到77%,因为隐性区别可能带来好处。