Stochastic processes provide a mathematically elegant way model complex data. In theory, they provide flexible priors over function classes that can encode a wide range of interesting assumptions. In practice, however, efficient inference by optimisation or marginalisation is difficult, a problem further exacerbated with big data and high dimensional input spaces. We propose a novel variational autoencoder (VAE) called the prior encoding variational autoencoder ($\pi$VAE). The $\pi$VAE is finitely exchangeable and Kolmogorov consistent, and thus is a continuous stochastic process. We use $\pi$VAE to learn low dimensional embeddings of function classes. We show that our framework can accurately learn expressive function classes such as Gaussian processes, but also properties of functions to enable statistical inference (such as the integral of a log Gaussian process). For popular tasks, such as spatial interpolation, $\pi$VAE achieves state-of-the-art performance both in terms of accuracy and computational efficiency. Perhaps most usefully, we demonstrate that the low dimensional independently distributed latent space representation learnt provides an elegant and scalable means of performing Bayesian inference for stochastic processes within probabilistic programming languages such as Stan.


翻译:存储过程提供了一种数学优雅的模型复杂数据。 在理论上, 它们为功能类别提供了灵活的前科, 可以将一系列有趣的假设编码为广泛的功能类别。 但是, 在实践上, 优化或边缘化的高效推断是困难的, 大数据或高维输入空间会使问题进一步恶化。 我们提出一个新的变异自动编码器( VAE), 叫做前编码变异自动编码器( pi$ VAE) 。 美元是有限的互换和 Kolmogorov, 因而是一个连续的随机过程。 我们使用 $\ pi$ VAE 来学习功能类的低维化嵌入。 我们显示, 我们的框架可以准确地学习显示像高斯进程和高斯进程这样的表达功能类别, 但也显示功能的属性, 以便进行统计推导( 如日志测量过程的有机组成部分 ) 。 关于流行的任务, 诸如空间内调和Kolmogorovovorov, 既能以精确和计算效率的方式实现状态- 。 也许最有用的是, 我们展示低维度空间程序以可独立地分析的方式在空间中进行空间的平流分析。

0
下载
关闭预览

相关内容

专知会员服务
46+阅读 · 2021年4月24日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
因果图,Causal Graphs,52页ppt
专知会员服务
238+阅读 · 2020年4月19日
自动结构变分推理,Automatic structured variational inference
专知会员服务
38+阅读 · 2020年2月10日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年10月14日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
10+阅读 · 2021年2月18日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
Arxiv
4+阅读 · 2018年1月15日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
相关论文
Arxiv
0+阅读 · 2021年10月14日
Arxiv
64+阅读 · 2021年6月18日
Arxiv
10+阅读 · 2021年2月18日
Hyperspherical Variational Auto-Encoders
Arxiv
4+阅读 · 2018年9月26日
Arxiv
4+阅读 · 2018年1月15日
Top
微信扫码咨询专知VIP会员