A contemporary feed application usually provides blended results of organic items and sponsored items~(ads) to users. Conventionally, ads are exposed at fixed positions. Such a static exposure strategy is inefficient due to ignoring users' personalized preferences towards ads. To this end, adaptive ad exposure has become an appealing strategy to boost the overall performance of the feed. However, existing approaches to implementing the adaptive ad exposure still suffer from several limitations: 1) they usually fall into sub-optimal solutions because of only focusing on request-level optimization without consideration of the long-term application-level performance and constraints, 2) they neglect the necessity of keeping the game-theoretical properties of ad auctions, which may lead to anarchy in bidding, and 3) they can hardly be deployed in large-scale applications due to high computational complexity. In this paper, we focus on long-term performance optimization under hierarchical constraints in feeds and formulate the adaptive ad exposure as a Dynamic Knapsack Problem. We propose an effective approach: Hierarchically Constrained Adaptive Ad Exposure~(HCA2E). We present that HCA2E possesses desired game-theoretical properties, computational efficiency, and performance robustness. Comprehensive offline and online experiments on a leading e-commerce application demonstrate the significant performance superiority of HCA2E over representative baselines. HCA2E has also been deployed on this application to serve millions of daily users.
翻译:当代饲料应用通常向用户提供有机物品和受赞助物品~(Ads)的混合结果。在《公约》中,广告在固定位置上暴露。这种静态接触战略效率低下,因为无视用户个人对广告的偏好。为此,适应性广告接触已成为提高饲料总体性能的吸引战略。然而,现有的适应性接触应用方法仍然受到若干限制:1)它们通常会陷入亚最佳解决方案,因为仅仅侧重于请求一级的优化,而不考虑长期应用水平的性能和限制;2)它们忽视了保持模拟拍卖的游戏理论性能的必要性,这可能导致投标无序;3)由于计算复杂性高,这些静态接触战略几乎无法在大规模应用中部署。在本文件中,我们侧重于在食物的等级限制下长期性能优化,并将适应性接触设计为动态Knapsack问题。我们提议一种有效的方法:在不考虑长期应用水平的适应性约束性适应性Ad 暴露~(HCA2E)。我们介绍,HCA2E拥有理想的游戏-理论-理论性特性的游戏性特征性特性,在网上应用上也展示了HCA2级的高级高级高级高级应用。