In this paper we introduce the notion of explicit worst-case bounded adaptive algorithms for applications with fixed process-completion requirements. Such applications demand that a process be guaranteed to complete within an established time interval while adaptively reducing computational overhead during that interval, e.g., so as to reduce total energy usage. Our principal contribution is the access-adaptive priority search tree (AAPST), which can provide efficient distribution-sensitive performance comparable to the splay tree, but do so within strict - and O(logn) optimal - worst-case per-query bounds. More specifically, while the splay tree is conjectured to offer optimal adaptive amortized query complexity, it may require O(n) for individual queries, whereas the AAPST offers competitive distribution-sensitive performance with strict O(logn) time complexity. This makes the AAPST more suitable for certain interactive (e.g., online and real-time) applications such as space system modules with reliability constraints involving rigid process-completion time intervals with secondary energy-minimization incentives.
翻译:在本文中,我们引入了对具有固定流程完成要求的应用采用明确、最坏情况限制的适应性算法的概念。这种应用要求保证一个过程在固定的时间间隔内完成,同时适应性地减少该间隔期间的计算间接费用,例如,减少能源的总使用量。我们的主要贡献是获取适应性优先搜索树(AAPST),它能够提供与平面树相类似的高效分布敏感性功能,但在严格(O(log))和O(log)范围内这样做。更具体地说,Splay树被预测为提供最佳的适应性摊销查询复杂性,但可能要求O(n)用于个别查询,而AAPST提供具有竞争性的分布敏感性性功能,并且具有严格的O(logn)时间复杂性。这使得AAPST更适合某些互动性(例如在线和实时)应用,例如空间系统模块,其可靠性受限制,包括硬程序完成时间间隔,以及二级能源最小化激励。