Coordinate networks like Multiplicative Filter Networks (MFNs) and BACON offer some control over the frequency spectrum used to represent continuous signals such as images or 3D volumes. Yet, they are not readily applicable to problems for which coarse-to-fine estimation is required, including various inverse problems in which coarse-to-fine optimization plays a key role in avoiding poor local minima. We introduce a new coordinate network architecture and training scheme that enables coarse-to-fine optimization with fine-grained control over the frequency support of learned reconstructions. This is achieved with two key innovations. First, we incorporate skip connections so that structure at one scale is preserved when fitting finer-scale structure. Second, we propose a novel initialization scheme to provide control over the model frequency spectrum at each stage of optimization. We demonstrate how these modifications enable multiscale optimization for coarse-to-fine fitting to natural images. We then evaluate our model on synthetically generated datasets for the the problem of single-particle cryo-EM reconstruction. We learn high resolution multiscale structures, on par with the state-of-the art.
翻译:多重式过滤网络(MFNs) 和 BACON 等坐标网络对用于代表图像或3D卷等连续信号的频谱提供了某种控制。 然而,它们并不容易适用于需要粗到软估计的问题,包括粗到软优化在避免当地微小图像方面发挥关键作用的各种反向问题。 我们引入了新的协调网络架构和培训计划, 使粗到软优化能够对学习重建的频率支持进行精细控制。 这是通过两个关键创新实现的。 首先, 我们加入跳过连接, 以便在适合微小结构时将结构保存在一个比例上。 其次, 我们提出一个新的初始化计划, 以便在优化的每个阶段对模型频谱进行控制。 我们演示这些修改是如何使粗到软能够实现多尺度的优化, 使粗到软的图像与自然图像相适应。 然后我们评估我们合成生成的单粒冷- EM 重建问题数据集的模型。 我们学习高分辨率多尺度结构, 与艺术的状态相近。