GAN inversion aims to invert an input image into the latent space of a pre-trained GAN. Despite the recent advances in GAN inversion, there remain challenges to mitigate the tradeoff between distortion and editability, i.e. reconstructing the input image accurately and editing the inverted image with a small visual quality drop. The recently proposed pivotal tuning model makes significant progress towards reconstruction and editability, by using a two-step approach that first inverts the input image into a latent code, called pivot code, and then alters the generator so that the input image can be accurately mapped into the pivot code. Here, we show that both reconstruction and editability can be improved by a proper design of the pivot code. We present a simple yet effective method, named cycle encoding, for a high-quality pivot code. The key idea of our method is to progressively train an encoder in varying spaces according to a cycle scheme: W->W+->W. This training methodology preserves the properties of both W and W+ spaces, i.e. high editability of W and low distortion of W+. To further decrease the distortion, we also propose to refine the pivot code with an optimization-based method, where a regularization term is introduced to reduce the degradation in editability. Qualitative and quantitative comparisons to several state-of-the-art methods demonstrate the superiority of our approach.
翻译:将GAN 反转, 目的是将输入图像转换成预受过训练的GAN GAN 的潜在空间。 尽管最近GAN 反转的进展最近有所进展,但在减少扭曲和可编辑性之间的权衡平衡方面仍然存在挑战。 尽管GAN 扭曲和可编辑性之间的平衡, 即: 精确重建输入图像, 以小视觉质量下降来编辑反倒图像。 最近提议的关键调整模式在重建和可编辑方面取得重大进展。 最近提议的关键调整模式采用两步方法,首先将输入图像转换为隐性的代码,称为 pivot 代码,然后修改生成器,以便将输入图像转换成一个潜在的代码,称为 pivot 代码。 尽管最近GAN 的变异性在GAN 中有所进步,但尽管在GAN 和 编辑性代码的正确设计上有所改进。 我们提出了一个简单有效的简单有效的方法,称为循环编码。 我们方法的关键思想是逐步在不同的空间中培养一个编码,即W - > W+ > > - > - > W。 这个培训方法维护了W+ W+ W+ W+W 的空间的特性, 也保护了我们W 空间的特性。,, 即高的可修改 W- 和低的可编辑性, 和低的可修改性 提议W- 和低的可修改 W- 和低的可修改 W+ 的可修正性规则, 降低W- 降低W- 和低的可修改- 的可修改- 和低的可修改- 和低的可调 的, 和低的可变性, 。