Deep Gaussian processes (DGPs) upgrade ordinary GPs through functional composition, in which intermediate GP layers warp the original inputs, providing flexibility to model non-stationary dynamics. Two DGP regimes have emerged in recent literature. A "big data" regime, prevalent in machine learning, favors approximate, optimization-based inference for fast, high-fidelity prediction. A "small data" regime, preferred for computer surrogate modeling, deploys posterior integration for enhanced uncertainty quantification (UQ). We aim to bridge this gap by expanding the capabilities of Bayesian DGP posterior inference through the incorporation of the Vecchia approximation, allowing linear computational scaling without compromising accuracy or UQ. We are motivated by surrogate modeling of simulation campaigns with upwards of 100,000 runs - a size too large for previous fully-Bayesian implementations - and demonstrate prediction and UQ superior to that of "big data" competitors. All methods are implemented in the "deepgp" package on CRAN.
翻译:深高斯进程(DGPs)通过功能构成提升普通GP(DGP),中间GP层对原始输入进行扭曲,为模型非静止动态提供灵活性。在最近的文献中出现了两种DGP制度。“大数据”制度,在机器学习中盛行,偏好近似,优化法推导快速、高度忠诚预测的“大数据”制度。“小数据”制度,在计算机替代模型中首选,部署后方集成,以加强不确定性量化(UQ)。我们的目标是缩小这一差距,通过纳入Vecchia近似法,扩大Bayesian DGP后方推断能力,允许线性计算缩放,而不损害准确性或UQ。 我们的动机是模拟运动的模拟模型,其规模在10万次运行中(这一规模在以前全巴耶斯实施时过大)显示预测和UQ优于“大数据”竞争者。所有方法都在CRAN的“deepgp”套件中实施。