Several common dual quaternion functions, such as the power function, the magnitude function, the $2$-norm function and the $k$th largest eigenvalue of a dual quaternion Hermitian matrix, are standard dual quaternion functions, i.e., the standard parts of their function values depend upon only the standard parts of their dual quaternion variables. Furthermore, the sum, product, minimum, maximum and composite functions of two standard dual functions, the logarithm and the exponential of standard unit dual quaternion functions, are still standard dual quaternion functions. On the other hand, the dual quaternion optimization problem, where objective and constraint function values are dual numbers but variables are dual quaternions, naturally arises from applications. We show that to solve an equality constrained dual quaternion optimization problem, we only need to solve two quaternion optimization problems. If the involved dual quaternion functions are all standard, the optimization problem is called a standard dual quaternion optimization problem, and some better results hold. Then, we show that the dual quaternion optimization problems arising from the hand-eye calibration problem and the simultaneous localization and mapping (SLAM) problem are equality constrained standard dual quaternion optimization problems.
翻译:多个共同的双重顶部功能,如电功能、 量函数、 量函数、 $$- 诺姆函数和 美元最大的双重顶值,是标准的双重顶功能, 即其函数的标准部分仅取决于其双重顶变量的标准部分。 此外, 两个标准双重函数的对数、 产品、 最小值、 最大值和复合功能, 即对数和标准单位双重顶功能的指数, 仍然是标准的双重顶函数。 另一方面, 双重顶优化问题, 其目标值和约束函数是双重顶值, 但变量是双重顶值, 自然产生于应用程序。 我们表明, 要解决一个受平等制约的双重顶部优化问题, 我们只需要解决两个双重顶部优化问题。 如果两个双重顶部功能都是标准, 最优化问题被称为标准的双重顶部优化问题, 以及一些更好的结果。 然后, 我们显示, 双重顶顶部优化问题是双重重重校准问题( SLAM) 以及同时的局部优化问题。