We present a general decentralized formulation for a large class of collision avoidance methods and show that all collision avoidance methods of this form are guaranteed to be collision free. This class includes several existing algorithms in the literature as special cases. We then present a particular instance of this collision avoidance method, CARP (Collision Avoidance by Reciprocal Projections), that is effective even when the estimates of other agents' positions and velocities are noisy. The method's main computational step involves the solution of a small convex optimization problem, which can be quickly solved in practice, even on embedded platforms, making it practical to use on computationally-constrained robots such as quadrotors. This method can be extended to find smooth polynomial trajectories for higher dynamic systems such at quadrotors. We demonstrate this algorithm's performance in simulations and on a team of physical quadrotors. Our method finds optimal projections in a median time of 17.12ms for 285 instances of 100 randomly generated obstacles, and produces safe polynomial trajectories at over 60hz on-board quadrotors. Our paper is accompanied by an open source Julia implementation and ROS package.
翻译:我们为大量避免碰撞的方法提出了一个一般性的分散配方,并表明,这种形式的避免碰撞的所有方法都保证不发生碰撞。这一类包括文献中现有的几种算法,作为特例。然后我们将这种避免碰撞的方法,即CARP(通过相互预测避免碰撞)提出一个特别的例子,即使在其他物剂位置和速度的估计十分吵闹的情况下,这种方法也是有效的。这个方法的主要计算步骤涉及解决小锥形优化问题,这种小锥形优化问题可以在实际中迅速解决,甚至在嵌入的平台上解决,从而可以实际应用到计算上受限制的机器人上,例如类固态机器人。这个方法可以推广到为在类固态中较先进的动态系统找到光滑的多元轨迹。我们在模拟中和一组物理测算器上展示了这种算法的性能。我们的方法发现最佳预测是在中位时间17.12ms,285个随机产生的障碍可以迅速解决,并产生安全的多质截截点,例如,在60hz以上的碎石器上。我们的纸是开放源的安装。