Conventional information-theoretic quantities assume access to probability distributions. Estimating such distributions is not trivial. Here, we consider function-based formulations of cross entropy that sidesteps this a priori estimation requirement. We propose three measures of R\'enyi's $\alpha$-cross-entropies in the setting of reproducing-kernel Hilbert spaces. Each measure has its appeals. We prove that we can estimate these measures in an unbiased, non-parametric, and minimax-optimal way. We do this via sample-constructed Gram matrices. This yields matrix-based estimators of R\'enyi's $\alpha$-cross-entropies. These estimators satisfy all of the axioms that R\'enyi established for divergences. Our cross-entropies can thus be used for assessing distributional differences. They are also appropriate for handling high-dimensional distributions, since the convergence rate of our estimator is independent of the sample dimensionality. Python code for implementing these measures can be found at https://github.com/isledge/MBRCE
翻译:常规信息- 理论量假定访问概率分布。 估计这种分布不是微不足道的。 在这里, 我们考虑基于功能的跨环对映式配方, 从而绕过这一先验估计要求。 我们建议了R\' enyi' $\ alpha$- 跨物种的三种测量方法, 用于设定再生产内核Hilbert 空间。 每种测量方法都有其吸引力。 我们证明我们可以用一种公正、 非参数和微量- 最佳方式来估计这些措施。 我们通过样本构建的矩阵来进行这种估算。 这个基于矩阵的 R\ enyi' $\ alpha$- 跨物种的测算器。 这些测算器符合R\ enyi 为差异而建立的所有轴。 因此, 我们的跨物种可以用来评估分布差异。 这些测量器对于处理高维分布也很合适, 因为我们的测算器的趋同率独立于样本维度矩阵。 执行这些措施的矩阵代码可以在 https:// gius/ comlead。