Quantum error correcting codes are of primary interest for the evolution towards quantum computing and quantum Internet. We analyze the performance of stabilizer codes, one of the most important classes for practical implementations, on both symmetric and asymmetric quantum channels. To this aim, we first derive the weight enumerator (WE) for the undetectable errors based on the quantum MacWilliams identities. The WE is then used to evaluate tight upper bounds on the error rate of CSS quantum codes with minimum weight decoding. For surface codes we also derive a simple closed form expression of the bounds over the depolarizing channel. Finally, we introduce a novel approach that combines the knowledge of WE with a logical operator analysis. This method allows the derivation of the exact asymptotic performance for short codes. For example, on a depolarizing channel with physical error rate $\rho \to 0$ it is found that the logical error rate $\rho_\mathrm{L}$ is asymptotically $\rho_\mathrm{L} \approx 16 \rho^2$ for the $[[9,1,3]]$ Shor code, $\rho_\mathrm{L} \approx 16.3 \rho^2$ for the $[[7,1,3]]$ Steane code, $\rho_\mathrm{L} \approx 18.7 \rho^2$ for the $[[13,1,3]]$ surface code, and $\rho_\mathrm{L} \approx 149.3 \rho^3$ for the $[[41,1,5]]$ surface code. For larger codes our bound provides $\rho_\mathrm{L} \approx 1215 \rho^4$ and $\rho_\mathrm{L} \approx 663 \rho^5$ for the $[[85,1,7]]$ and the $[[181,1,10]]$ surface codes, respectively.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
0+阅读 · 2024年3月19日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员