We consider online scheduling on unrelated (heterogeneous) machines in a speed-oblivious setting, where an algorithm is unaware of the exact job-dependent processing speeds. We show strong impossibility results for clairvoyant and non-clairvoyant algorithms and overcome them in models inspired by practical settings: (i) we provide competitive learning-augmented algorithms, assuming that (possibly erroneous) predictions on the speeds are given, and (ii) we provide competitive algorithms for the speed-ordered model, where a single global order of machines according to their unknown job-dependent speeds is known. We prove strong theoretical guarantees and evaluate our findings on a representative heterogeneous multi-core processor. These seem to be the first empirical results for algorithms with predictions that are performed in a non-synthetic environment on real hardware.
翻译:我们考虑在超速(异质)环境下对不相干(异质)的机器进行在线调度,因为算法不知道确切的依职处理速度。 我们为Clirvoyant和非clairvoyant算法展示了强大的不可能的结果,并在由实际环境启发的模型中克服了这些结果:(一) 我们提供竞争性学习增强算法,假设对速度的预测(可能是错误的),以及(二) 我们为速度定序模型提供竞争性算法,在这个模型中,根据未知的依职处理速度排列的单一全球机器顺序是已知的。 我们证明了强有力的理论保障,并评估了我们对具有代表性的多核心处理器的研究结果。 这似乎是在非合成环境下对真实硬件进行预测的算法的第一个实验结果。