We present a numerical modeling workflow based on machine learning (ML) which reproduces the the total energies produced by Kohn-Sham density functional theory (DFT) at finite electronic temperature to within chemical accuracy at negligible computational cost. Based on deep neural networks, our workflow yields the local density of states (LDOS) for a given atomic configuration. From the LDOS, spatially-resolved, energy-resolved, and integrated quantities can be calculated, including the DFT total free energy, which serves as the Born-Oppenheimer potential energy surface for the atoms. We demonstrate the efficacy of this approach for both solid and liquid metals and compare results between independent and unified machine-learning models for solid and liquid aluminum. Our machine-learning density functional theory framework opens up the path towards multiscale materials modeling for matter under ambient and extreme conditions at a computational scale and cost that is unattainable with current algorithms.
翻译:我们展示了一个基于机器学习的数字模型工作流程,它复制了Kohn-Sham密度功能理论(DFT)在有限的电子温度下产生的总能量,其化学精度以可忽略的计算成本计算。基于深神经网络,我们的工作流程产生特定原子配置的状态密度(LDOS)。从LDOS中可以计算出空间溶解、能源溶解和集成的数量,包括DFT总自由能源,它作为原子的Born-Oppenheimer潜在能源表面。我们展示了这一方法对固体和液体金属的功效,并比较了固体和液体铝的独立和统一机器学习模型之间的结果。我们的机器学习密度功能理论框架开辟了在计算尺度上为环境和极端条件下的多尺度材料建模开辟了道路,成本与目前的算法是无法实现的。