With the rapid growth of Internet video data amounts and types, a unified Video Quality Assessment (VQA) is needed to inspire video communication with perceptual quality. To meet the real-time and universal requirements in providing such inspiration, this study proposes a VQA model from a classification of User Generated Content (UGC), Professionally Generated Content (PGC), and Occupationally Generated Content (OGC). In the time domain, this study utilizes non-uniform sampling, as each content type has varying temporal importance based on its perceptual quality. In the spatial domain, centralized downsampling is performed before the VQA process by utilizing a patch splicing/sampling mechanism to lower complexity for real-time assessment. The experimental results demonstrate that the proposed method achieves a median correlation of $0.7$ while limiting the computation time below 5s for three content types, which ensures that the communication experience of UGC, PGC, and OGC can be optimized altogether.
翻译:随着互联网视频数据量和类型的快速增长,需要一个统一的视频质量评估(VQA)来启发感知质量的视频通信。为了满足提供这种启发式的实时和普遍要求,本研究从用户生成的内容(UGC)、专业生成的内容(PGC)和职业生成的内容(OGC)的分类出发,提出了一个 VQA 模型。在时间域中,本研究利用非均匀采样,因为每种内容类型基于其感知质量有不同的时间重要性。在空间域中,在VQA过程之前,利用一个补丁拼接/采样机制进行集中降采样,以降低实时评估的复杂性。实验结果表明,所提出的方法在三种内容类型的情况下,限制计算时间低于5s,同时达到中位相关性为0.7,这确保了UGC、PGC和OGC的通信体验可以同时优化。