We investigate the problem of collaborative tree exploration with complete communication introduced by [FGKP06], in which a group of $k$ agents is assigned to collectively go through all edges of an unknown tree in an efficient manner and then return to the origin. The agents have unrestricted communication and computation capabilities. The algorithm's runtime is typically compared to the cost of offline traversal, which is at least $\max\{2n/k,2D\}$ where $n$ is the number of nodes and $D$ is the tree depth. Since its introduction, two types of guarantee have emerged on the topic: the first is of the form $r(k)(n/k+D)$, where $r(k)$ is called the competitive ratio, and the other is of the form $2n/k+f(k,D)$, where $f(k,D)$ is called the competitive overhead. In this paper, we present the first algorithm with linear-in-$D$ competitive overhead, thereby reconciling both approaches. Specifically, our bound is in $2n/k + O(k^{\log_2 k} D)$ and thus leads to a competitive ratio in $O(k/\exp(0.8\sqrt{\ln k}))$. This is the first improvement over the $O(k/\ln k)$-competitive algorithm known since the introduction of the problem in 2004. Our algorithm is obtained for an asynchronous generalization of collective tree exploration (ACTE). It is an instance of a general class of locally-greedy exploration algorithms that we define. We show that the additive overhead analysis of locally-greedy algorithms can be seen through the lens of a 2-player game that we call the tree-mining game and that could be of independent interest.


翻译:暂无翻译

0
下载
关闭预览

相关内容

FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
13+阅读 · 2017年12月5日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员