Numerical simulation for climate modeling resolving all important scales is a computationally taxing process. Therefore, to circumvent this issue a low resolution simulation is performed, which is subsequently corrected for bias using reanalyzed data (ERA5), known as nudging correction. The existing implementation for nudging correction uses a relaxation based method for the algebraic difference between low resolution and ERA5 data. In this study, we replace the bias correction process with a surrogate model based on the Deep Operator Network (DeepONet). DeepONet (Deep Operator Neural Network) learns the mapping from the state before nudging (a functional) to the nudging tendency (another functional). The nudging tendency is a very high dimensional data albeit having many low energy modes. Therefore, the DeepoNet is combined with a convolution based auto-encoder-decoder (AED) architecture in order to learn the nudging tendency in a lower dimensional latent space efficiently. The accuracy of the DeepONet model is tested against the nudging tendency obtained from the E3SMv2 (Energy Exascale Earth System Model) and shows good agreement. The overarching goal of this work is to deploy the DeepONet model in an online setting and replace the nudging module in the E3SM loop for better efficiency and accuracy.
翻译:用于解决所有重要尺度的气候建模的数值模拟是一个计算税程序。 因此, 要绕过这一问题, 将进行低分辨率模拟, 并随后使用重新分析的数据( ERA5) 纠正偏向, 称为裸体校正。 现有的裸体校正实施使用基于放松的低分辨率和ERA5 数据之间的代谢差异法。 在本研究中, 我们用基于深操作器网络( DeepONet) 的代用模型取代偏向校正校正程序。 DeepONet (深操作器神经网络) 在孵化( 功能) 到裸体趋势( 其它功能) 之前, 进行低分辨率模拟, 并随后纠正偏向偏向偏向偏向偏向。 编校正趋势是一个非常高的天体数据, 尽管有许多低的能源模式。 因此, DeepoNet 与基于递增法的自动编码解解析码解码( AEDD) 结构相结合, 以便学习低维度潜空空间( DeepONet) 模型( 深操作神经网络) 的精度模型的精度在EMON2 ( EEEGEDARON3) 和EPLODLODLM 的精度模型中, 的精度模型的精度模型中显示了一个更好的精度模型的精度模型显示。