Diffusion-based methods represented as stochastic differential equations on a continuous-time domain have recently proven successful as a non-adversarial generative model. Training such models relies on denoising score matching, which can be seen as multi-scale denoising autoencoders. Here, we augment the denoising score matching framework to enable representation learning without any supervised signal. GANs and VAEs learn representations by directly transforming latent codes to data samples. In contrast, the introduced diffusion-based representation learning relies on a new formulation of the denoising score matching objective and thus encodes the information needed for denoising. We illustrate how this difference allows for manual control of the level of details encoded in the representation. Using the same approach, we propose to learn an infinite-dimensional latent code that achieves improvements of state-of-the-art models on semi-supervised image classification. We also compare the quality of learned representations of diffusion score matching with other methods like autoencoder and contrastively trained systems through their performances on downstream tasks.
翻译:在连续时间域中作为随机差异方程式代表的基于扩散的方法最近证明作为一种非对抗性的基因模型是成功的。培训这些模式依赖于分解分数比对,这可以被看作是多尺度的解密自动对立器。在这里,我们增加分解分数匹配框架,以便能够在没有受到监督的信号的情况下进行代表性学习。GANs和VAEs通过直接将潜在代码转换成数据样本来学习表达方式。相比之下,引入的基于传播的代号学习依赖于非注分比对匹配目标的新配方,从而将进行分解所需的信息编码。我们说明这种差异如何允许手工控制代号中详细程度。我们提议采用同样的方法,学习一个能够改进半监控图像分类方面最新技术模型的无限维值潜在代码。我们还比较了传播分比对等与其他方法(如自动分解码和反向培训系统)的新表述质量,这些方法通过下游任务的表现来进行对比。