This paper investigates a new yet challenging problem called Reverse $k$-Maximum Inner Product Search (R$k$MIPS). Given a query (item) vector, a set of item vectors, and a set of user vectors, the problem of R$k$MIPS aims to find a set of user vectors whose inner products with the query vector are one of the $k$ largest among the query and item vectors. We propose the first subquadratic-time algorithm, i.e., Shifting-aware Asymmetric Hashing (SAH), to tackle the R$k$MIPS problem. To speed up the Maximum Inner Product Search (MIPS) on item vectors, we design a shifting-invariant asymmetric transformation and develop a novel sublinear-time Shifting-Aware Asymmetric Locality Sensitive Hashing (SA-ALSH) scheme. Furthermore, we devise a new blocking strategy based on the Cone-Tree to effectively prune user vectors (in a batch). We prove that SAH achieves a theoretical guarantee for solving the RMIPS problem. Experimental results on five real-world datasets show that SAH runs 4$\sim$8$\times$ faster than the state-of-the-art methods for R$k$MIPS while achieving F1-scores of over 90\%. The code is available at \url{https://github.com/HuangQiang/SAH}.
翻译:本文调查了一个新的但又具有挑战性的问题,即“反转 $-Meximum 产品搜索 ” (R$-MIPS ) 。鉴于一个查询(项目)矢量、一组物品矢量和一组用户矢量,R$-MIPS 问题旨在寻找一套用户矢量,其与查询矢量的内产产品是查询矢量和物品矢量中最大值的美元中最大值之一。我们提出了第一个次赤道时间算法,即“变换-觉辨识反射”系统(SAAH),以解决R$-k$ MIPS 问题。为了加快对项目矢量的最大内部产品搜索(MIPS),我们设计了一个变换-不动的不对称变换,并开发了一套新的子线性亚线矢量调整- 敏感度(SA-ALSH) 系统。此外,我们根据Cone-Treeree 系统设计了一个新的阻塞策略,以有效使用普纳用户矢量矢量矢量(分批) 。我们证明SAA$$8-SMAQ(RMA-s-s-laxyal laxyal sal laxyal sal laudal sal sal sal lapsyal sal sal lapsyal sal sal laps lapsyal lapsyal) lapss) 4-s