Pointwise maximal leakage (PML) is an operationally meaningful privacy measure that quantifies the amount of information leaking about a secret $X$ to a single outcome of a related random variable $Y$. In this paper, we extend the notion of PML to random variables on arbitrary probability spaces. We develop two new definitions: First, we extend PML to countably infinite random variables by considering adversaries who aim to guess the value of discrete (finite or countably infinite) functions of $X$. Then, we consider adversaries who construct estimates of $X$ that maximize the expected value of their corresponding gain functions. We use this latter setup to introduce a highly versatile form of PML that captures many scenarios of practical interest whose definition requires no assumptions about the underlying probability spaces.
翻译:点态最大泄露(PML)是一个有操作意义的隐私度量方法,用于量化有关一个秘密$X$与相关随机变量$Y$单个结果泄露的信息量。在本文中,我们将PML的概念拓展至任意概率空间的随机变量。我们开发了两个新的定义:首先,我们通过考虑旨在猜测$X$的离散(有限或可数无限)函数值的对手,将PML扩展到可数无限随机变量。然后,我们考虑构建$X$的估计值最大化其相应的增益函数期望值的对手。我们利用这种后一设定来介绍一种高度通用的PML形式,可以捕捉许多实际情况,而其定义不需要对底层概率空间做任何假设。