We propose r-ssGPFA, an unsupervised online anomaly detection model for uni- and multivariate time series building on the efficient state space formulation of Gaussian processes. For high-dimensional time series, we propose an extension of Gaussian process factor analysis to identify the common latent processes of the time series, allowing us to detect anomalies efficiently in an interpretable manner. We gain explainability while speeding up computations by imposing an orthogonality constraint on the mapping from the latent to the observed. Our model's robustness is improved by using a simple heuristic to skip Kalman updates when encountering anomalous observations. We investigate the behaviour of our model on synthetic data and show on standard benchmark datasets that our method is competitive with state-of-the-art methods while being computationally cheaper.
翻译:我们建议 r-sGPFA, 是一个不受监督的单和多变时间序列的在线异常现象检测模型, 以高山进程的有效状态空间配制为基础。 对于高山进程, 我们提议延长高山进程要素分析, 以确定时间序列的共同潜在过程, 使我们能够以可解释的方式有效地检测异常现象。 我们通过对从潜到被观测的绘图施加一个分级限制来加快计算速度。 我们的模型的坚固性得到改进, 方法是在遇到异常观察时用简单的超常方法跳过Kalman的更新。 我们调查我们的合成数据模型的行为, 并在标准基准数据集中显示, 我们的方法在计算更廉价的同时, 与最先进的方法具有竞争力。