We consider the problem of learning distance-based Graph Convolutional Networks (GCNs) for relational data. Specifically, we first embed the original graph into the Euclidean space $\mathbb{R}^m$ using a relational density estimation technique thereby constructing a secondary Euclidean graph. The graph vertices correspond to the target triples and edges denote the Euclidean distances between the target triples. We emphasize the importance of learning the secondary Euclidean graph and the advantages of employing a distance matrix over the typically used adjacency matrix. Our comprehensive empirical evaluation demonstrates the superiority of our approach over $12$ different GCN models, relational embedding techniques and rule learning techniques.
翻译:具体地说,我们首先使用相关密度估计技术将原始图表嵌入欧几里德空间 $\ mathbb{R ⁇ m$, 从而构建了欧几里德二次图。图形顶端对应目标三边和边缘,表示目标三边之间的欧几里德距离。我们强调学习二级欧几里德图的重要性,以及使用远程矩阵优于通常使用的相邻矩阵的好处。我们的全面经验评估表明,我们的方法优于1 200美元不同的GCN模型、关联嵌入技术和规则学习技术。