We consider the problem of learning distance-based Graph Convolutional Networks (GCNs) for relational data. Specifically, we first embed the original graph into the Euclidean space $\mathbb{R}^m$ using a relational density estimation technique thereby constructing a secondary Euclidean graph. The graph vertices correspond to the target triples and edges denote the Euclidean distances between the target triples. We emphasize the importance of learning the secondary Euclidean graph and the advantages of employing a distance matrix over the typically used adjacency matrix. Our comprehensive empirical evaluation demonstrates the superiority of our approach over $12$ different GCN models, relational embedding techniques and rule learning techniques.


翻译:具体地说,我们首先使用相关密度估计技术将原始图表嵌入欧几里德空间 $\ mathbb{R ⁇ m$, 从而构建了欧几里德二次图。图形顶端对应目标三边和边缘,表示目标三边之间的欧几里德距离。我们强调学习二级欧几里德图的重要性,以及使用远程矩阵优于通常使用的相邻矩阵的好处。我们的全面经验评估表明,我们的方法优于1 200美元不同的GCN模型、关联嵌入技术和规则学习技术。

0
下载
关闭预览

相关内容

【图与几何深度学习】Graph and geometric deep learning,49页ppt
专知会员服务
49+阅读 · 2020年8月27日
一份简单《图神经网络》教程,28页ppt
专知会员服务
124+阅读 · 2020年8月2日
最新《几何深度学习》教程,100页ppt,Geometric Deep Learning
专知会员服务
100+阅读 · 2020年7月16日
因果图,Causal Graphs,52页ppt
专知会员服务
247+阅读 · 2020年4月19日
【图神经网络(GNN)结构化数据分析】
专知会员服务
115+阅读 · 2020年3月22日
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
一文读懂图卷积GCN
AINLP
4+阅读 · 2019年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Arxiv
7+阅读 · 2021年10月19日
已删除
Arxiv
32+阅读 · 2020年3月23日
VIP会员
相关资讯
经典回顾 | Collaborative Metric Learning
机器学习与推荐算法
6+阅读 · 2020年9月18日
论文浅尝 | GMNN: Graph Markov Neural Networks
开放知识图谱
20+阅读 · 2020年2月14日
一文读懂图卷积GCN
AINLP
4+阅读 · 2019年12月17日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
Top
微信扫码咨询专知VIP会员