Person Re-Identification aims to retrieve person identities from images captured by multiple cameras or the same cameras in different time instances and locations. Because of its importance in many vision applications from surveillance to human-machine interaction, person re-identification methods need to be reliable and fast. While more and more deep architectures are proposed for increasing performance, those methods also increase overall model complexity. This paper proposes a lightweight network that combines global, part-based, and channel features in a unified multi-branch architecture that builds on the resource-efficient OSNet backbone. Using a well-founded combination of training techniques and design choices, our final model achieves state-of-the-art results on CUHK03 labeled, CUHK03 detected, and Market-1501 with 85.1% mAP / 87.2% rank1, 82.4% mAP / 84.9% rank1, and 91.5% mAP / 96.3% rank1, respectively.
翻译:个人身份重新确认的目的是从不同时间和地点的多个相机或相同相机所摄取的图像中检索个人身份。 由于其在从监视到人体机器互动的许多视觉应用中的重要性, 人的身份重新识别方法需要可靠和快速。 虽然为了提高性能而提议了越来越多的深层结构,但这些方法也增加了总体模型复杂性。 本文建议建立一个轻量网络, 将全球、 部分基础和频道特性结合起来, 在资源效率高的OSNet主干线上建立的统一多部门结构中。 我们的最后模型利用有根据的培训技术和设计选择组合, 实现了CUHK03标签、检测到的CUHK03和市场1501的最新结果, 分别为85.1% mAP/87.2%排名1、82.4% mAP/84.9%排名1和91.5% mAP/96.3%排名1。