Studies on benign overfitting provide insights for the success of overparameterized deep learning models. In this work, we examine the benign overfitting phenomena in real-world settings. We found that for tasks such as training a ResNet model on ImageNet dataset, the model does not fit benignly. To understand why benign overfitting fails in the ImageNet experiment, we analyze previous benign overfitting models under a more restrictive setup where the number of parameters is not significantly larger than the number of data points. Under this mild overparameterization setup, our analysis identifies a phase change: unlike in the heavy overparameterization setting, benign overfitting can now fail in the presence of label noise. Our study explains our empirical observations, and naturally leads to a simple technique known as self-training that can boost the model's generalization performances. Furthermore, our work highlights the importance of understanding implicit bias in underfitting regimes as a future direction.
翻译:有关良性超配的研究为过度量化深层学习模型的成功提供了洞察力。 在这项工作中,我们检查了现实世界环境中的良性超配现象。 我们发现,对于在图像网络数据集中培训ResNet模型等任务,该模型并不自然适合。 为了理解为什么在图像网络实验中良性超配失败,我们分析了以前在比数据点数量大得多的更具限制性的设置下优美性超配模型。 在这种轻度超标设置下,我们的分析确定了一个阶段变化:与重度超标设置不同,在标签噪音面前,良性超配现在可能失败。我们的研究解释了我们的经验观察,并自然地导致一种简单的技术,即自我培训,可以提升模型的概括性表现。此外,我们的工作强调了理解不完善制度中隐含的偏差作为未来方向的重要性。