The ability of snapshot compressive imaging (SCI) systems to efficiently capture high-dimensional (HD) data has led to an inverse problem, which consists of recovering the HD signal from the compressed and noisy measurement. While reconstruction algorithms grow fast to solve it with the recent advances of deep learning, the fundamental issue of accurate and stable recovery remains. To this end, we propose deep equilibrium models (DEQ) for video SCI, fusing data-driven regularization and stable convergence in a theoretically sound manner. Each equilibrium model implicitly learns a nonexpansive operator and analytically computes the fixed point, thus enabling unlimited iterative steps and infinite network depth with only a constant memory requirement in training and testing. Specifically, we demonstrate how DEQ can be applied to two existing models for video SCI reconstruction: recurrent neural networks (RNN) and Plug-and-Play (PnP) algorithms. On a variety of datasets and real data, both quantitative and qualitative evaluations of our results demonstrate the effectiveness and stability of our proposed method. The code and models are available at: https://github.com/IndigoPurple/DEQSCI .
翻译:光速压缩成像(SCI)系统有效捕捉高维(HD)数据的能力已导致一个反向问题,它包括从压缩和噪音测量中恢复HD信号。虽然重建算法随着最近深层学习的进展而迅速增长以解决这个问题,但准确和稳定恢复的根本问题仍然存在。为此,我们为视频SCI提出深平衡模型(DEQ),以理论合理的方式使用数据驱动的正规化和稳定融合。每个平衡模型都隐含地学习一个非解释性的操作器,并分析地计算固定点,从而能够无限的迭代步骤和无限的网络深度,只有培训和测试方面的持续记忆要求。具体地说,我们演示DEQ如何应用到现有的两个视频SCI重建模型:经常性神经网络(RNN)和Plug-Play(PnP)算法。关于我们结果的各种数据集和真实数据,定量和定性评价都表明我们拟议方法的有效性和稳定性。代码和模型见:https://github.com/IndigoPur/DEQ。