Rendering and inverse-rendering algorithms that drive conventional computer graphics have recently been superseded by neural representations (NR). NRs have recently been used to learn the geometric and the material properties of the scenes and use the information to synthesize photorealistic imagery, thereby promising a replacement for traditional rendering algorithms with scalable quality and predictable performance. In this work we ask the question: Does neural graphics (NG) need hardware support? We studied representative NG applications showing that, if we want to render 4k res. at 60FPS there is a gap of 1.5X-55X in the desired performance on current GPUs. For AR/VR applications, there is an even larger gap of 2-4 OOM between the desired performance and the required system power. We identify that the input encoding and the MLP kernels are the performance bottlenecks, consuming 72%,60% and 59% of application time for multi res. hashgrid, multi res. densegrid and low res. densegrid encodings, respectively. We propose a NG processing cluster, a scalable and flexible hardware architecture that directly accelerates the input encoding and MLP kernels through dedicated engines and supports a wide range of NG applications. We also accelerate the rest of the kernels by fusing them together in Vulkan, which leads to 9.94X kernel-level performance improvement compared to un-fused implementation of the pre-processing and the post-processing kernels. Our results show that, NGPC gives up to 58X end-to-end application-level performance improvement, for multi res. hashgrid encoding on average across the four NG applications, the performance benefits are 12X,20X,33X and 39X for the scaling factor of 8,16,32 and 64, respectively. Our results show that with multi res. hashgrid encoding, NGPC enables the rendering of 4k res. at 30FPS for NeRF and 8k res. at 120FPS for all our other NG applications.
翻译:摘要:传统的计算机图形驱动渲染和反渲染算法最近被神经表示(NR)所取代。NR最近被用于学习场景的几何和材料属性,并利用该信息来合成逼真的图像,从而有望替代具有可伸缩质量和可预测性能的传统渲染算法。在这项工作中,我们提出一个问题:神经图形(NG)需要硬件支持吗?我们研究了代表性的NG应用程序,显示出如果我们想要以60FPS渲染4k分辨率,则当前GPU的期望性能存在1.5X-55X的差距。对于AR/VR应用程序,期望性能和所需系统功率之间存在更大的2-4 OOM差距。我们确定输入编码和MLP内核是性能瓶颈,对于多解析度哈希网格、多解析度密集网格和低解析度密集网格编码,它们分别占用72%、60%和59%的应用程序时间。我们提出了一个NG处理集群,这是一种可扩展而灵活的硬件架构,通过专用引擎直接加速输入编码和MLP内核,并支持各种NG应用。我们还通过在Vulkan中将其融合在一起来加速其余内核,这导致与未融合的预处理和后处理内核的实现相比,内核级性能提高了9.94倍。我们的结果表明,NGPC提供多达58X的端到端应用程序级性能改进,平均而言,对于四个NG应用程序,对于缩放因子8、16、32和64,性能优势分别为12X、20X、33X和39X。我们的结果表明,通过多解析度哈希网格编码,NGPC可以实现在NeRF中以30FPS渲染4k分辨率,在所有其他NG应用程序中以120FPS渲染8k分辨率。