Processing-in-memory (PIM) has been explored for decades by computer architects, yet it has never seen the light of day in real-world products due to their high design overheads and lack of a killer application. With the advent of critical memory-intensive workloads, several commercial PIM technologies have been introduced to the market ranging from domain-specific PIM architectures to more general-purpose PIM architectures. In this work, we deepdive into UPMEM's commercial PIM technology, a general-purpose PIM-enabled parallel architecture that is highly programmable. Our first key contribution is the development of a flexible simulation framework for PIM. The simulator we developed (aka PIMulator) enables the compilation of UPMEM-PIM source codes into its compiled machine-level instructions, which are subsequently consumed by our cycle-level performance simulator. Using PIMulator, we demystify UPMEM's PIM design through a detailed characterization study. Building on top of our characterization, we conduct a series of case studies to pathfind important architectural features that we deem will be critical for future PIM architectures to support
翻译:暂无翻译