Networks found with Neural Architecture Search (NAS) achieve state-of-the-art performance in a variety of tasks, out-performing human-designed networks. However, most NAS methods heavily rely on human-defined assumptions that constrain the search: architecture's outer-skeletons, number of layers, parameter heuristics and search spaces. Additionally, common search spaces consist of repeatable modules (cells) instead of fully exploring the architecture's search space by designing entire architectures (macro-search). Imposing such constraints requires deep human expertise and restricts the search to pre-defined settings. In this paper, we propose LCMNAS, a method that pushes NAS to less constrained search spaces by performing macro-search without relying on pre-defined heuristics or bounded search spaces. LCMNAS introduces three components for the NAS pipeline: i) a method that leverages information about well-known architectures to autonomously generate complex search spaces based on Weighted Directed Graphs with hidden properties, ii) an evolutionary search strategy that generates complete architectures from scratch, and iii) a mixed-performance estimation approach that combines information about architectures at initialization stage and lower fidelity estimates to infer their trainability and capacity to model complex functions. We present experiments in 13 different data sets showing that LCMNAS is capable of generating both cell and macro-based architectures with minimal GPU computation and state-of-the-art results. More, we conduct extensive studies on the importance of different NAS components in both cell and macro-based settings. Code for reproducibility is public at https://github.com/VascoLopes/LCMNAS.
翻译:通过神经架构搜索(NAS)发现网络,在各种任务中达到最先进的性能,优于人设计的网络。然而,大多数NAS方法严重依赖限制搜索的人类定义假设:建筑的外骨质、层数、参数超度和搜索空间。此外,共同搜索空间包括可重复模块(细胞),而不是通过设计整个结构(宏观研究)来充分探索建筑的搜索空间。实施这些限制需要深层次的人类专门知识,并限制搜索到预定义的设置。在本文件中,我们建议LCMNAS,这种方法通过不依赖预定义的外骨质、层数、参数超度和搜索空间,将NAS推向较少限制的搜索空间。 LCMNAS 引入了三个组件:i) 一种方法,利用已知建筑的信息,以设计整个结构为基础,自主生成基于隐藏特性的复杂搜索空间。二) 一种关于从抓取完整结构的进化搜索战略,而我们提出了LCMNAS系统初始和低级的搜索环境, 一种更精确的计算方法,即将目前精度的精度的精度的精度的精度模型和精度的精度的精度的精度估算方法。