Networks found with Neural Architecture Search (NAS) achieve state-of-the-art performance in a variety of tasks, out-performing human-designed networks. However, most NAS methods heavily rely on human-defined assumptions that constrain the search: architecture's outer-skeletons, number of layers, parameter heuristics and search spaces. Additionally, common search spaces consist of repeatable modules (cells) instead of fully exploring the architecture's search space by designing entire architectures (macro-search). Imposing such constraints requires deep human expertise and restricts the search to pre-defined settings. In this paper, we propose LCMNAS, a method that pushes NAS to less constrained search spaces by performing macro-search without relying on pre-defined heuristics or bounded search spaces. LCMNAS introduces three components for the NAS pipeline: i) a method that leverages information about well-known architectures to autonomously generate complex search spaces based on Weighted Directed Graphs with hidden properties, ii) an evolutionary search strategy that generates complete architectures from scratch, and iii) a mixed-performance estimation approach that combines information about architectures at initialization stage and lower fidelity estimates to infer their trainability and capacity to model complex functions. We present experiments in 13 different data sets showing that LCMNAS is capable of generating both cell and macro-based architectures with minimal GPU computation and state-of-the-art results. More, we conduct extensive studies on the importance of different NAS components in both cell and macro-based settings. Code for reproducibility is public at https://github.com/VascoLopes/LCMNAS.


翻译:通过神经架构搜索(NAS)发现网络,在各种任务中达到最先进的性能,优于人设计的网络。然而,大多数NAS方法严重依赖限制搜索的人类定义假设:建筑的外骨质、层数、参数超度和搜索空间。此外,共同搜索空间包括可重复模块(细胞),而不是通过设计整个结构(宏观研究)来充分探索建筑的搜索空间。实施这些限制需要深层次的人类专门知识,并限制搜索到预定义的设置。在本文件中,我们建议LCMNAS,这种方法通过不依赖预定义的外骨质、层数、参数超度和搜索空间,将NAS推向较少限制的搜索空间。 LCMNAS 引入了三个组件:i) 一种方法,利用已知建筑的信息,以设计整个结构为基础,自主生成基于隐藏特性的复杂搜索空间。二) 一种关于从抓取完整结构的进化搜索战略,而我们提出了LCMNAS系统初始和低级的搜索环境, 一种更精确的计算方法,即将目前精度的精度的精度的精度的精度模型和精度的精度的精度的精度估算方法。

0
下载
关闭预览

相关内容

LESS 是一个开源的样式语言,受到 Sass 的影响。严格来说,LESS 是一个嵌套的元语言,符合语法规范的 CSS 语句也是符合规范的 Less 代码。
专知会员服务
59+阅读 · 2020年3月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Neural Architecture Search without Training
Arxiv
10+阅读 · 2021年6月11日
Arxiv
12+阅读 · 2018年9月5日
VIP会员
相关资讯
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Latest News & Announcements of the Workshop
中国图象图形学学会CSIG
0+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
ICLR2019最佳论文出炉
专知
11+阅读 · 2019年5月6日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【推荐】YOLO实时目标检测(6fps)
机器学习研究会
20+阅读 · 2017年11月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员