This paper proposes an adaptive randomization procedure for two-stage randomized controlled trials. The method uses data from a first-wave experiment in order to determine how to stratify in a second wave of the experiment, where the objective is to minimize the variance of an estimator for the average treatment effect (ATE). We consider selection from a class of stratified randomization procedures which we call stratification trees: these are procedures whose strata can be represented as decision trees, with differing treatment assignment probabilities across strata. By using the first wave to estimate a stratification tree, we simultaneously select which covariates to use for stratification, how to stratify over these covariates, as well as the assignment probabilities within these strata. Our main result shows that using this randomization procedure with an appropriate estimator results in an asymptotic variance which is minimal in the class of stratification trees. Moreover, the results we present are able to accommodate a large class of assignment mechanisms within strata, including stratified block randomization. In a simulation study, we find that our method, paired with an appropriate cross-validation procedure ,can improve on ad-hoc choices of stratification. We conclude by applying our method to the study in Karlan and Wood (2017), where we estimate stratification trees using the first wave of their experiment.


翻译:本文为两阶段随机控制试验建议一个适应性随机化程序。 方法使用第一波实验的数据, 以确定如何在实验第二波中分层, 目的是将平均治疗效果( ATE) 的估计值差异最小化。 我们考虑从一类分层随机化程序中选择一个我们称之为分层树的分层随机化程序: 这些是其层次可以代表为决定树的程序, 不同层次的治疗概率分配不同。 通过使用第一波来估计分层树, 我们同时选择哪些共变量用于分层, 如何分层, 以及这些层内的分配概率 。 我们的主要结果显示, 使用这种随机化程序, 适当的估计值使分层树的分层性差异最小。 此外, 我们所展示的结果能够适应层次内部的大型分配机制, 包括分层区块随机化。 在模拟研究中, 我们发现我们使用的方法, 分层分层的分层和分层的分层概率, 以及这些层的分层的分层概率。 我们的主要结果显示, 使用这个随机化程序

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Arxiv
0+阅读 · 2021年11月28日
Arxiv
5+阅读 · 2020年10月2日
Asymmetrical Vertical Federated Learning
Arxiv
3+阅读 · 2020年6月11日
Arxiv
4+阅读 · 2019年11月25日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关VIP内容
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
248+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
动物脑的好奇心和强化学习的好奇心
CreateAMind
10+阅读 · 2019年1月26日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
Top
微信扫码咨询专知VIP会员