We study the correlated equilibrium polytope $P_G$ of a game $G$ from a combinatorial point of view. We introduce the region of full-dimensionality for this class of polytopes and prove that it is a semialgebraic set for any game. Using a stratification via oriented matroids, we propose a structured method for describing the possible combinatorial types of $P_G$, and show that for $(2 \times n)$-games, the algebraic boundary of the stratification is a union of coordinate hyperplanes and binomial hypersurfaces. Finally, we provide a computational proof that there exists a unique combinatorial type of maximal dimension for generic $(2 \times 3)$-games.
翻译:暂无翻译