We present a cross-market algorithmic trading system that balances execution quality with rigorous compliance enforcement. The architecture comprises a high-level planner, a reinforcement learning execution agent, and an independent compliance agent. We formulate trade execution as a constrained Markov decision process with hard constraints on participation limits, price bands, and self-trading avoidance. The execution agent is trained with proximal policy optimization, while a runtime action-shield projects any unsafe action into a feasible set. To support auditability without exposing proprietary signals, we add a zero-knowledge compliance audit layer that produces cryptographic proofs that all actions satisfied the constraints. We evaluate in a multi-venue, ABIDES-based simulator and compare against standard baselines (e.g., TWAP, VWAP). The learned policy reduces implementation shortfall and variance while exhibiting no observed constraint violations across stress scenarios including elevated latency, partial fills, compliance module toggling, and varying constraint limits. We report effects at the 95% confidence level using paired t-tests and examine tail risk via CVaR. We situate the work at the intersection of optimal execution, safe reinforcement learning, regulatory technology, and verifiable AI, and discuss ethical considerations, limitations (e.g., modeling assumptions and computational overhead), and paths to real-world deployment.
翻译:暂无翻译