Given a specification $\varphi(X,Y)$ over inputs $X$ and output $Y$, defined over a background theory $\mathbb{T}$, the problem of program synthesis is to design a program $f$ such that $Y=f(X)$ satisfies the specification $\varphi$. Over the past decade, syntax-guided synthesis (SyGuS) has emerged as a dominant approach for program synthesis where in addition to the specification $\varphi$, the end-user also specifies a grammar $L$ to aid the underlying synthesis engine. This paper investigates the feasibility of synthesis techniques without grammar, a sub-class defined as $\mathbb{T}$-constrained synthesis. We show that $\mathbb{T}$-constrained synthesis can be reduced to DQF($\mathbb{T}$), i.e., to the problem of finding a witness of a Dependency Quantified Formula Modulo Theory. When the underlying theory is the theory of bitvectors, the corresponding DQF(BV) problem can be further reduced to Dependency Quantified Boolean Formulas (DQBF). We rely on the progress in DQBF solving to design DQBF-based synthesizers that outperform the domain-specific program synthesis techniques, thereby positioning DQBF as a core representation language for program synthesis. Our empirical analysis shows that $\mathbb{T}$-constrained synthesis can achieve significantly better performance than syntax-guided approaches. Furthermore, the general-purpose DQBF solvers perform on par with domain-specific synthesis techniques.


翻译:根据以背景理论 $\ mathbb{T} 美元定义的用于投入(X,Y) 美元和产出(Y) 美元的规格 {Y美元,程序合成的问题是设计一个方案$f美元,使Y=f(X)美元符合规格 $\ varphie美元。在过去的十年中,语法指导合成(SyGuS)已成为一个主导方案合成方法,除了规格 $\ varphie 美元,最终用户还指定了用于辅助基本合成引擎的语法$ 。本文调查了合成技术的可行性,而没有使用内部语法,这是一个小类,定义为 $\ mathb{T$(X) 符合规格 $\ f(X) 美元。在过去的十年中,语法指导合成合成(Syguus) 成为了一种主导方法, 也就是找到一个基于 Qnational QQ- contaild FILO 的证人。当基本理论是Blickral deminateal degal developal Q, 而相应的BFFBIF- rodeal rodustrutal deal Q rodustrisl roduisl droduisl 这样的程序可以进一步在基础化方法上, Q。

0
下载
关闭预览

相关内容

【硬核书】Linux核心编程|Linux Kernel Programming,741页pdf
专知会员服务
79+阅读 · 2021年3月26日
【斯坦福CS329S】机器学习系统设计导论,92页ppt
专知会员服务
39+阅读 · 2021年1月19日
Fariz Darari简明《博弈论Game Theory》介绍,35页ppt
专知会员服务
111+阅读 · 2020年5月15日
注意力图神经网络的多标签文本分类
专知会员服务
112+阅读 · 2020年3月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年7月8日
Arxiv
0+阅读 · 2021年7月7日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Facebook PyText 在 Github 上开源了
AINLP
7+阅读 · 2018年12月14日
vae 相关论文 表示学习 1
CreateAMind
12+阅读 · 2018年9月6日
条件GAN重大改进!cGANs with Projection Discriminator
CreateAMind
8+阅读 · 2018年2月7日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员