Given a specification $\varphi(X,Y)$ over inputs $X$ and output $Y$, defined over a background theory $\mathbb{T}$, the problem of program synthesis is to design a program $f$ such that $Y=f(X)$ satisfies the specification $\varphi$. Over the past decade, syntax-guided synthesis (SyGuS) has emerged as a dominant approach for program synthesis where in addition to the specification $\varphi$, the end-user also specifies a grammar $L$ to aid the underlying synthesis engine. This paper investigates the feasibility of synthesis techniques without grammar, a sub-class defined as $\mathbb{T}$-constrained synthesis. We show that $\mathbb{T}$-constrained synthesis can be reduced to DQF($\mathbb{T}$), i.e., to the problem of finding a witness of a Dependency Quantified Formula Modulo Theory. When the underlying theory is the theory of bitvectors, the corresponding DQF(BV) problem can be further reduced to Dependency Quantified Boolean Formulas (DQBF). We rely on the progress in DQBF solving to design DQBF-based synthesizers that outperform the domain-specific program synthesis techniques, thereby positioning DQBF as a core representation language for program synthesis. Our empirical analysis shows that $\mathbb{T}$-constrained synthesis can achieve significantly better performance than syntax-guided approaches. Furthermore, the general-purpose DQBF solvers perform on par with domain-specific synthesis techniques.
翻译:根据以背景理论 $\ mathbb{T} 美元定义的用于投入(X,Y) 美元和产出(Y) 美元的规格 {Y美元,程序合成的问题是设计一个方案$f美元,使Y=f(X)美元符合规格 $\ varphie美元。在过去的十年中,语法指导合成(SyGuS)已成为一个主导方案合成方法,除了规格 $\ varphie 美元,最终用户还指定了用于辅助基本合成引擎的语法$ 。本文调查了合成技术的可行性,而没有使用内部语法,这是一个小类,定义为 $\ mathb{T$(X) 符合规格 $\ f(X) 美元。在过去的十年中,语法指导合成合成(Syguus) 成为了一种主导方法, 也就是找到一个基于 Qnational QQ- contaild FILO 的证人。当基本理论是Blickral deminateal degal developal Q, 而相应的BFFBIF- rodeal rodustrutal deal Q rodustrisl roduisl droduisl 这样的程序可以进一步在基础化方法上, Q。