Motivated by an application to drug repurposing, we propose the first algorithms to tackle the identification of the m $\ge$ 1 arms with largest means in a linear bandit model, in the fixed-confidence setting. These algorithms belong to the generic family of Gap-Index Focused Algorithms (GIFA) that we introduce for Top-m identification in linear bandits. We propose a unified analysis of these algorithms, which shows how the use of features might decrease the sample complexity. We further validate these algorithms empirically on simulated data and on a simple drug repurposing task.
翻译:基于药物重新定位的应用,我们建议采用第一种算法,在固定的自信环境中,用线性土匪模式,用最大手段识别一股m$Ge$1武器。这些算法属于Gap-Index Focus Focus Algorithms(GIFA)的普通家族,我们在线性土匪中引入了顶级识别法。我们建议对这些算法进行统一分析,表明特征的使用如何降低样本的复杂性。我们进一步根据模拟数据和简单的药物重新定位任务,对这些算法进行了经验验证。