This paper studies a multi-armed bandit (MAB) version of the range-searching problem. In its basic form, range searching considers as input a set of points (on the real line) and a collection of (real) intervals. Here, with each specified point, we have an associated weight, and the problem objective is to find a maximum-weight point within every given interval. The current work addresses range searching with stochastic weights: each point corresponds to an arm (that admits sample access) and the point's weight is the (unknown) mean of the underlying distribution. In this MAB setup, we develop sample-efficient algorithms that find, with high probability, near-optimal arms within the given intervals, i.e., we obtain PAC (probably approximately correct) guarantees. We also provide an algorithm for a generalization wherein the weight of each point is a multi-dimensional vector. The sample complexities of our algorithms depend, in particular, on the size of the optimal hitting set of the given intervals. Finally, we establish lower bounds proving that the obtained sample complexities are essentially tight. Our results highlight the significance of geometric constructs -- specifically, hitting sets -- in our MAB setting.


翻译:本文研究一个多臂强盗( MAB) 版本的测距搜索问题。 以其基本形式, 范围搜索将一组点( 真实线上) 和一系列( 真实) 间隔作为输入输入。 这里, 每指定一点, 我们都有相关的重量, 问题的目标是在每个特定的间隔内找到一个最大重量点。 目前的工作用随机重量来研究范围: 每个点对应一个手臂( 允许抽样访问), 点的重量是底部分布的( 未知的) 平均值 。 在这个测距设置中, 我们开发了一个样本效率低的算法, 在给定的间隔内发现一组极有可能接近最佳的手臂, 也就是说, 我们得到了PAC( 可能大致正确) 的保证 。 我们还为总化提供了一种算法, 其中每个点的重量是多维矢量 。 我们算法的抽样复杂度取决于特定间隔内最佳打击量的大小 。 最后, 我们设定了更低的界限, 证明获得的取样复杂性基本上很紧。 我们的测算结果显示我们的测距的意义 。

0
下载
关闭预览

相关内容

专知会员服务
41+阅读 · 2020年12月18日
【干货书】机器学习速查手册,135页pdf
专知会员服务
122+阅读 · 2020年11月20日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
57+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
168+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Arxiv
1+阅读 · 2021年6月30日
Optimization for deep learning: theory and algorithms
Arxiv
102+阅读 · 2019年12月19日
Arxiv
3+阅读 · 2018年2月24日
Arxiv
5+阅读 · 2017年12月14日
VIP会员
相关资讯
LibRec 精选:AutoML for Contextual Bandits
LibRec智能推荐
7+阅读 · 2019年9月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
【TED】什么让我们生病
英语演讲视频每日一推
7+阅读 · 2019年1月23日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
RL 真经
CreateAMind
5+阅读 · 2018年12月28日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Top
微信扫码咨询专知VIP会员