We propose a framework for solving high-dimensional Bayesian inference problems using \emph{structure-exploiting} low-dimensional transport maps or flows. These maps are confined to a low-dimensional subspace (hence, lazy), and the subspace is identified by minimizing an upper bound on the Kullback--Leibler divergence (hence, structured). Our framework provides a principled way of identifying and exploiting low-dimensional structure in an inference problem. It focuses the expressiveness of a transport map along the directions of most significant discrepancy from the posterior, and can be used to build deep compositions of lazy maps, where low-dimensional projections of the parameters are iteratively transformed to match the posterior. We prove weak convergence of the generated sequence of distributions to the posterior, and we demonstrate the benefits of the framework on challenging inference problems in machine learning and differential equations, using inverse autoregressive flows and polynomial maps as examples of the underlying density estimators.
翻译:我们提出一个框架,用低维运输地图或流体解决高维贝伊斯推论问题。这些地图仅限于一个低维次空间(自然、懒惰),分空间的识别方法是将库尔回背-利伯尔差异(自然、结构化)的上界最小化。我们的框架提供了一种原则性方法,用以在推论问题中查明和利用低维结构。它侧重于运输图的表达性,沿着与后方最重大差异的方向,并可用于构建懒惰地图的深度构成,其中对参数的低维预测被迭代转换为与后方空间相匹配。我们证明生成的分布序列与后方分布序列的趋同薄弱,我们展示了框架在挑战机器学习和差异方程式中的推论问题方面的好处,使用反向反向反向反向反向反向反向反向流和多元图作为基本密度估测器的例子。