Lung nodules can be an alarming precursor to potential lung cancer. Missed nodule detections during chest radiograph analysis remains a common challenge among thoracic radiologists. In this work, we present a multi-task lung nodule detection algorithm for chest radiograph analysis. Unlike past approaches, our algorithm predicts a global-level label indicating nodule presence along with local-level labels predicting nodule locations using a Dual Head Network (DHN). We demonstrate the favorable nodule detection performance that our multi-task formulation yields in comparison to conventional methods. In addition, we introduce a novel Dual Head Augmentation (DHA) strategy tailored for DHN, and we demonstrate its significance in further enhancing global and local nodule predictions.
翻译:肺结核可能是潜在肺癌的一个令人震惊的先兆。胸腔放射分析期间未能探测到结核,这仍然是胸腔放射学家的一个共同挑战。在这项工作中,我们提出了一个用于胸部放射分析的多任务肺结核检测算法。与以往的做法不同,我们的算法预测了一个全球等级的标签,显示结核的存在,以及利用双头网络预测结核地点的地方一级标签。我们展示了我们的多任务配方与常规方法相比产生的有利结核检测性能。此外,我们引入了为DHN量身定制的新型双层增强(DHA)战略,我们展示了该战略在进一步加强全球和地方结核预测方面的重要性。