Spectral graph sparsification aims to find ultra-sparse subgraphs which can preserve spectral properties of original graphs. In this paper, a new spectral criticality metric based on trace reduction is first introduced for identifying spectrally important off-subgraph edges. Then, a physics-inspired truncation strategy and an approach using approximate inverse of Cholesky factor are proposed to compute the approximate trace reduction efficiently. Combining them with the iterative densification scheme in \cite{feng2019grass} and the strategy of excluding spectrally similar off-subgraph edges in \cite{fegrass}, we develop a highly effective graph sparsification algorithm. The proposed method has been validated with various kinds of graphs. Experimental results show that it always produces sparsifiers with remarkably better quality than the state-of-the-art GRASS \cite{feng2019grass} in same computational cost, enabling more than 40% time reduction for preconditioned iterative equation solver on average. In the applications of power grid transient analysis and spectral graph partitioning, the derived iterative solver shows 3.3X or more advantages on runtime and memory cost, over the approach based on direct sparse solver.


翻译:光谱图透析的目的是找到能够保存原始图形光谱特性的超偏向分光谱子图。 在本文中,我们首先采用了基于微微减的新的光谱临界度指标,以识别光谱重要下子边缘。 然后,提出了物理学启发的曲解策略和使用近似反向孔斯基系数的方法,以高效地计算大约减少痕量。将它们与\cite{feng2019gras}中的迭接密度计划以及排除光谱相似的离子线边缘的战略结合起来。在\cite{fegras}中,我们开发了一种非常有效的光谱光谱关键度度度度度度测量算法。拟议的方法已被各种图表验证。实验结果显示,它总是以相同的计算成本来生成质量比高级得多的压缩器。 使得40%以上的时间能够平均地排除光谱相似的离子线边。 在应用电网透视图透射法时, 以及基于 3.3 30 分辨率分析的分辨率分析或直径分辨率分析中, 显示以3. X 的分辨率分析或直位分辨率分析为3. X 的分辨率分析。

0
下载
关闭预览

相关内容

[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员