In this paper, we study the problem of the 1-of-2 string oblivious transfer (OT) between Alice and Bob in the presence of a passive eavesdropper Eve. The eavesdropper Eve is not allowed to get any information about the private data of Alice or Bob. When Alice and Bob are honest-but-curious users, we propose a protocol that satisfies $1$-private (neither Alice nor Bob colludes with Eve) OT requirements for the binary erasure symmetric broadcast channel, in which the channel provides dependent erasure patterns to Bob and Eve. We find that when the erasure probabilities satisfy certain conditions, the derived lower and upper bounds on the wiretapped OT capacity meet. Our results generalize and improve upon the results on wiretapped OT capacity by Mishra et al. Finally, we propose a protocol for a larger class of wiretapped channels and derive a lower bound on the wiretapped OT capacity.
翻译:在本文中,我们研究了Alice和Bob之间在被动窃听者夏娃面前的1比2的隐性传输(OT)的问题。 窃听者夏娃不能获得关于Alice或Bob私人数据的任何信息。 当Alice和Bob是诚实但多疑的用户时, 我们提议一项协议,满足一美元私人( 无论是Alice还是Bob与Eve的勾结者) OT 的要求, 该协议是二进制的对称广播频道, 该频道向Bob和Eve提供依赖式的删除模式。 我们发现, 当断线的OT能力满足某些条件时, 生成的下限和上限会合。 我们的结果概括并改进了Mishra et al 的连接OT能力的结果。 最后, 我们提出了一个协议, 用于更大型的有线连接的频道, 并在有线的OT能力上设定一个更低的连接。